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eFigure 1.  Enrollment 
 
 

150 consented 

233 contacted staff about study participation  

31 scheduled a study visit but did not 
follow through:   

• 6 illness - self or family member 
• 2 no longer interested 
• 1 no transportation 
• 1 therapist indicated subject not 

appropriate for study 
• 9 no reason given 
• 12 no show 

 

52 were not scheduled for study visit 
because enrollment for asymptomatic 
subjects was already closed:  

• 39 with mental health diagnosis but 
currently asymptomatic 

• 13 healthy controls (no current or  
past history of mental illness) 

83 not consented 

145 completed participation 

5 excluded: 
• 3 with psychotic disorder  
• 1 due to severity of depression 
• 1 withdrew because of psychological 

discomfort during interview 
 

19 healthy 
controls (no 

current or past 
history of 
psychiatric 
diagnosis) 

126 with a 
psychiatric 
diagnosis: 
• 90 currently 

symptomatic  
• 21 symptoms 

currently not 
clinically  
significant   

• 15 currently 
asymptomatic  

Of the 126 with a psychiatric diagnosis, 
96 (76%) had >1 Axis I diagnosis  

Data Supplement for Achtyes et al. (10.1176/appi.ps.201400390)
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Online Supplemental Appendix 

The Logic of Item Response Theory (IRT):  Classical and IRT methods of measurement differ 

dramatically in the ways in which items are administered and scored. The difference is clarified 

by the following analogy. Imagine a track and field meet in which ten athletes participate in the 

110-meter hurdles race and also in the high jump. Suppose that the hurdles race is not quite 

conventional in that the hurdles are not all the same height and the score is determined, not only 

by the runner’s time, but also by the number of hurdles successfully cleared, i.e., not tipped over. 

On the other hand the high jump is conducted in the conventional way: the cross bar is raised by, 

say, 2 cm increments on the uprights, and the athletes try to jump over the bar without dislodging 

it. The first of these two events is like a traditionally scored objective test: runners attempt to 

clear hurdles of varying heights analogous to questions of varying difficulty that examinees try to 

answer correctly in the time allowed. In either case, a specific counting operation measures 

ability to clear the hurdles or answer the questions. On the high jump, ability is measured by a 

scale in millimeters and centimeters at the highest scale position of the cross bar the athlete can 

clear.  IRT measurement uses the same logic as the high jump. Test items are arranged on a 

continuum at certain fixed points of increasing difficulty. The examinee attempts to answer items 

until she can no longer do so correctly.  Ability is measured by the location on the continuum of 

the last item answered correctly.  Hence, in IRT, ability is measured by a scale point, rather than 

a numerical count. 

These two approaches to measurement contrast sharply: if hurdles are arbitrarily added or 

removed, number of hurdles cleared cannot be compared.  The same is true of traditional 

number-right scores of objective tests: scores lose their comparability if item composition is 

changed.  The same is not true, however, of the high jump or of IRT scoring. If positions on the 
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bar are omitted, height cleared is unchanged and only the precision of the measurement at that 

point on the scale is affected.  Similarly, in IRT scoring of tests, a certain number of items can be 

arbitrarily added, deleted or replaced without losing comparability of scores on the scale. This 

property of scaled measurement, as opposed to counts of events, is the most salient advantage of 

IRT over classical methods of psychological measurement. 

 

Computerized Adaptive Testing (CAT):  Consider a 1000-item mathematics test with items 

ranging in difficulty from basic arithmetic through advanced calculus. We now test two 

examinees, a fourth grader and a graduate student in mathematics. Most questions will be 

uninformative for both examinees (too difficult for the first and too easy for the second). To 

decrease examinee burden, we could create a short test of 10 items, equally spaced along the 

mathematics difficulty continuum. While this test would be quick to administer, it would provide 

very imprecise estimates of these two examinees’ abilities because only an item or two would be 

appropriate for either examinee. A better approach would be to begin by administering an item of 

intermediate difficulty, and based on the response scored as “correct” or “incorrect” select the 

next item at a level of difficulty either lower or higher. This process would continue until the 

uncertainty in the estimated ability is smaller than a predefined threshold. When this process is 

automated and administered by a computer, it is called computerized adaptive testing (CAT).  To 

use CAT, we must first calibrate a “bank” of test items using an IRT model that relates properties 

of the test items (e.g., their difficulty and discrimination) to the ability (or other trait, such as 

severity of depression) of the examinee.  As such, the ‘difficulty’ or ‘severity level’ of an item 

refers to how indicative the item is of severity of illness.  Thus an item such as ‘I sometimes feel 

sad’ would have a low level of severity since almost every human being would endorse it, while 
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an item such as ‘ I am so distraught that I plan to take my life’ would have a high level of 

severity because it is only endorsed by the most severely depressed patients. The paradigm shift 

is that rather than administering a fixed number of items that provide limited information for any 

given participant, we adaptively administer a small but varying number of items (from a much 

larger “item bank”) which are optimal for the participant’s specific level of symptom severity.  

CAT for the bifactor model has been described by Gibbons and colleagues.1,2 

 

Computerized Adaptive Diagnosis: Diagnosis and measurement represent very different 

processes.  While IRT is ideal for measurement, it is not ideal for diagnostic screening where an 

external criterion is available (e.g. a SCID-based DSM diagnosis of MDD).  Decision trees3 

represent an attractive framework for designing adaptive predictive tests since their 

corresponding models can be represented as a sequence of binary decisions. Despite this intuitive 

appeal, decision trees have suffered from poor performance, largely as a result of variance 

associated with the specific algorithms used to estimate them and the limited modeling flexibility 

of small trees.  Instead, models constructed of averages of hundreds of decision trees, called 

random forests, have received considerable attention in statistics and machine learning.4  These 

models provide significant improvements in predictive performance, but lack the adaptive test 

structure inherent in individual trees. The important distinction between CAT and CAD is that in 

CAD we a have an external criterion or “gold standard” which in our case is a DSM diagnosis.  

Random forests allow us to create an adaptive sequence of items which provide a binary 

diagnostic decision with the smallest number of items and highest level of confidence for 

predicting the gold standard.  By contrast CAT allows us to adaptively administer a small set of 

optimally selected items which maximally preserves the information contained in the entire item 
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bank and therefore the CAT-based score will be highly correlated with the entire item bank 

score.  No external criterion is needed for CAT, however, an external criterion is useful for 

demonstrating the validity of a CAT-based severity score. 
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